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Abstract
Stability of the environment and the manipulator

taken as a whole has been investigated, and a bound for
stable manipulation has been derived. The stability
analysis has been investigated using unstructured models
for the dynamic behavior of the robot marlipulator and the
environment. This unified approach of modeling robot
dynamics is expressed in terms of sensitivity functions as
opposed to the Lagrangian approach. It allows us to
incorporate the dynamic behavior of all the elements of a
robot manipulator (i.e. actuators, sensors and the structural
compliance of the links) in addition tc> the rigid body
dynamics. We show that for stability of the robot, there
must be some initial compliancy either in the robot or in the
environment. The general stability condition has been
extended to the particular case where the environment is
very rigid in comparison with the robot stiimess.

Nomenclature
d vector of the external force on the robot end-point
e input trajectory vector
E environment dynamics
f vector of the contact force, (f,. f2. fn}T
f 00 Y 00 the limiting value of the contact force and robot

.position for rigid environment.
G robot dynamics with positioning controller
H compensator operating on the c:ontact force, f
In identity matrix
Js2+ Cs+ Kenvironment impedance in the linear domain
r input-command vector
n degrees of the freedom of the rob>t n(6
S robot manipulator sensitivity (l/stiffness)
T positive scalar
V the forward loop mapping from e to f in Figure 5.
x vector of the environment def1'~ction
Y vector of the robot end-point position
x 0 vector of the environment position before contact
e vector of the joint angles of the robot
Jl. 'I" positive scalars
000 frequency range of operation (]:oandwidth)
(XI .PI. v positive scalars

1. Introduction
Most assembly operations and manufacturing tasks

require mechanical interactions with the environment or
with the object being manipulated, along with "fast" motion
in free and unconstrained space. In constrained
maneuvers, the interaction force must be accommodated
rather than resisted. Two methods have l>een suggested for
development of compliant motion. The first approach is
aimed at controlling force and position in a nonconflicting
way (10,11,12,18). In this method, force is commanded
along those directions constrained by j;he environment,
while position is commanded along those directions in
which the manipulator is unconstrained and free to move.
The second approach is focused on developing a relationship
between the interaction forces and the manipulator
position(1,3,4, 7,13). By controlling the manipulator position
and specifying its relationship with the interaction forces, a

designer can ensure that the manipulator will be able to
maneuver in a constrained space while maintaining
appropriate contact forces. This paper describes an
analysis on the stability of the robot and environment taken
as a whole when the second method is employed to control the
robot compliancy.

We start with modeling the robot and the
environment with unstructured dynamic models. To arrive
at a general stability criterion, we avoid using structured
dynamic models such as first or second order transfer
functions as general representations of the dynamic
behavior of the components of the robot (such as actuators).
Using the unstructured models for the robot and
environment, we analyze the stability of the robot and
environment via the Small Gain Theorem and Nyquist
Criterion. We show that the stability condition achieved via
the Nyquist method is a subclass of criteria given by the
Small Gain Theorem. For a particular application, one can
replace the unstructured dynamic models with known
models and then a tighter condition can be achieved. The
stability criterion reveals that there must be some initial
compliancy either in the robot or in the environment. The
initial compliancy in the robot can be obtained by a passive
compliant element such as an RCC (Remote Center
Compliance) or compliancy within the positioning
feedback. Practitioners always observed that the system of a
robot and a stiff environment can always be stabilized when
a compliant element (e.g. piece of rubber or an RCC) is
installed between the robot and environment. The stability
criterion also shows that no compensator can be found to
stabilize the interaction of the ideal positioning system (very
rigid tracking robot) with an infinitely rigid environment.
In this case the robot and environment both resemble ideal
sources of flow (defined in bond graph theory) and they do
not physically complement each other.

2. Dynamic Model of the Robot
In this section, a general approach will be developed

to describe the dynamic behavior of a large class of
industrial and research robot manipulators having
positioning (tracking) controllers. The fact that most
industrial manipulators already have some kind of
positioning controller is the motivation behind our
approach. Also, a number of methodologies exist for the
development of robust positioning controllers for direct and
non-direct robot manipulators (14,17).

In general, the end-point position of a robot
manipulator that has a positioning controller is a dynamic
function of its input trajectory vector, e, and the external
force, d. Let G and S be two functions that describe the robot
end-point position, y. in a global coordinate frame.' (d is
measured in the global coordinate frame also.)

y-G(e)+S(d) (1)
The motion of the robot end-point in response to imposed
forces, d, is caused either by structural compliance in the
robot or by the compliance of the positioning controller. In a
simple example, if a Remote Center Compliance (RCC) with
a linear dynamic behavior is installed at the endpoint of the



robot, then S is equal to the reciprocal of stiffness
(impedance in the dynamic sense) of the RCC. Robotswith
tracking controllers are not infinitely stiff in response to
external forces (also called disturbances). Even though the
positioning controllers of robots are usually designed to
follow the trajectory commands and reject disturbances, the
robot end-point will move somewhat in response to imposed
forces on it. S is called the sensitivity fun(~tion and it maps
the external forces to the robot end-point position. For a robot
with a "good" positioning controller, S is a mapping with
small gain. No assumption on the inte~[lal structures of
G(e) and S(d) is made. Figure 1 shows It.he nature of the
mapping in equation 1.
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+ u Figure 1: Tbe Dynamics of the Robot. All the operators

of the block diagrams are unspecified and may be transfer
function matrices or time domain input-output

relationships.

Figure 2 shows one possible example of internal
structure of the model represented by equation 1. The robot
open loop dynamic equation is
M(e)~ +C(e.~)+ G..(e)--r:+JoTd where M(6), C(e,~), G..(e)
and Jo are the inertia matrix, coriolis, gt'avity forces and
the Jacobian. With the help of two mappings, T 1 and T 2- we
define ed and e as the desired position and the actual
position of the robot in the joint coordinatE, frame. P1 and
P2 are computer programs that calculate the best estimated
values of nonlinear terms in robot dynamics. Kp and Ky
are appropriate position and velocity gains to stabilize the
system(17). The system in Figure 2 with two inputs (e and
d), and one output, y. can be represented by block diagram
of Figure 1. Note that equation 1 is not necessarily
restricted to be composed of the elements of the block
diagram of Figure 2; the block diagram of Figure 2 is given
here as an example to show how one can actually model a
robot with equation 1. Also note that th,e model given by
equation 1 is not meant to be valid for contlroller design; it is
only for the purpose of stability analysis.

~d

2) is not sufficient for modeling. In fact, in many
industrial hydraulic robots, the actuators and the
servovalves dynamics dominate the total dynamic behavior
of the robots. We try to avoid using structured dynamic
models such as first or second order transfer functions as
general representations of the dynamic behavior of the
components of the robot (e.g. servovalves in the hydraulic
robots and the gear stiffness in the non-direct drive
systems). Throughout this paper we assume the robot
dynamic behavior is given by equation 1 where G(e) and
5(d) can be computed experimentally or analytically from
the closed loop block diagram similar to the one given in
Figure 2. A robot with good tracking capability has a small
gain for 5 (rejects all the forces) while a robot with a weak
tracking capability has a large gain for 5. In fact, an open
loop robot -which has the weakest tracking capability- can be
modeled with the largest gain on 5. If we define an open
loop robot as a system with very small feedback gain (Kp and
Ky-+O in the case of Figure 2) then equation 1 -with a large
gain for 5- can be used to model the open loop robots also.
Therefore we define G(e) and 5(d) as stable, nonlinear
operators in lp-space to represent the dynamic behavior of
not only the closed loop robots but also the open loop (in the
sense of above definition) robots. G(e) and 5(d) are such that
G:Lpn-Lpn, 5:Lpn-Lpn and also there exist constants cx,.
~1. CX2. and ~2 such thatIIG(e)llp(cx,llellp+~' and
115(d)lIp(CX2I1dllp+ ~2' cx2is called the gain of operator 5.

A similar modeling method can be given for
analysis of the linearly treated robots2. The transfer
function matrices, G and 5 in equation 2 are defined to
describe the dynamic behavior of a linearly treated robot
manipulator with positioning controller.

y(jw)- G(jw)e(jw) + 5(jw)d(jw) (2)
In equation 2, 5 is called the sensitivity transfer function
matrix and it maps the external forces to the end-point
position. G(jw) is the closed loop transfer function matrix
that maps the input trajectory vector, e. to the robot position,
y. For a robot with a "good" positioning controller, within
the closed loop bandwidth 5(jw) is "small" in the singular
value sense, while G[jw) is approximately a unity matrix.
If we defme an open loop linearly treated robot as a system
with very small feedback gain then equation 2 -with a
iarge" 5- can be used to model the open loop robots also:

3. Dynamic Behavior of the Environment
The environment can be very "soft" or very

"stiff'. We do not restrain ourselves to any geometry or to
any structure. If one point on the environment is displaced
as vector of x, with force vector, f, then the dynamic
behavior of the environment is given by equation 3.

f-E(x) (3)
If Xo is the initial location of the point of contact on

the environment before deformation occurs then, x -y-x o'
E is assumed to be stable in Lp-sense; E:Lnp-Lnp and
IIE(x)lIp~CX3I1xllp+ ~3' Confining equation 3 to cover the
linearly treated environment, equation 4 represents the
dynamic behavior of the environment.

f(jw) -E(jw) x(jw) (4)
E(jw) is a transfer function matrix that maps the amplitude
of the displacement vector, x to the amplitude of the contact
force, f. Matrix E is a nxn transfer function matrix. E is a
singular matrix when the robot interacts with the
environment in only some directions. For example, in
grinding a surface, the robot is constrained by the
environment in the direction normal to the surface only.
Readers can be convinced of the truth of equation 4 by

2Irhroughout this paper, for the benefit of clarity, we develop
the frequency domain theory for linearly treated robots in
parallel with the nonlinear analysis.
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Figure 2: An example to develop positioning controller

for a robot manipulator with rigid body dynamics. M(eJ.c(e.~J end ~r(eJare the estimated values (17). .

Equation 1 represents an input/output functional
relationship. This unified approach of modeling allows us
to incorporate the dynamic behavior of all the elements of the
robot. We believe that there may be enough components in
the robot itself that rigid body dynamics (llS given in Figure

The assumption that linear superposition (in equation 1)
holds for the effects of d and e is useful in 1mderstsnding the
nature of the interaction between th,~ robot and the
environment. This interaction is in a feedback form and
will be clarified with the help of Figure 3. We will note later
that the results of the nonlinear analysis do not depend on
this assumption, and one can extend the obtained results to
cover the case when G(e) and S(d) do not superimpose.



compensator

Figure 4: The Closed-loop System

analyzing the relationship of the force and displacement of a
spring as a simple model of the environment. E resembles
the stiffiless of a spring. References 3 and 4 represent
(Js2+Cs+K) for E where J, C and K are symmetric
matrices and s-Joo (8). J is the positive definite inertia
matrix while C and K are the positive semi definite
damping and the stiffiless matrices respe(:tively.

4. Dynamics of the Robot and Environment
Suppose a manipulator with dynamcic equation 1 is in

contact with an environment given by equation 3; then f--
d. Figure 3 shows the dynamics of the robot manipulator
and the environment when they are in c:ontact with each
other. Note that in some applications, the n)bot will have only
uni-directional force on the environment" For example, in
grinding a surface by a robot, the robot ,=an only push the
surface. If one considers positive fl for "pushing" and
n e gat i ve fl for "pulling", then in this class of
manipulation, the robot manipulator and the environment
are in contact with each other only along those directions
where f.>O for 1-1,...,n. In some appliications such as
screwing a bolt, the interaction force can be positive and
negative. This means the robot can have clockwise and
counter-clockwise interaction torque. The nonlinear
discriminator block diagram in Figure 3 is drawn with
dashed-line to illustrate the above concept.

Using equations 1 and 3, equations 5 and 6 represent
the entire dynamic behavior of the robot and environment.

y-G(e)+S(-f) (5)

f-E(x) where x- y-Xo (6)

~ x

..JL
E
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Figure 3: Interaction of the Robot 'with the Environment

If all the operators in Figure 3 are considered
transfer function matrices, equations 7 and 8 can be
obtained to represent the end-point position and the contact
force when xo-O.

y- (In + SEJ-1 Ge (7)
f-E(In+SEJ-IGe (8)
To simplify the block diagram of Figure 3, we introduce a
mapping from e to f.

f-V(eJ (9)
If all the operators in Figure 3 are transfer function
matrices, then V-E(In+SEJ-1G. V is assumed to be a
stable operator in Lp-sense; therefore: V:L np- L np and also
Ilv(eJllp$.tX41Iellp +P4. With this assumption, we
basically claim that a robot with stable Itracking controller
remains stable when it is in contact witl~ an environment.
Note that one can still define V without assuming the
superposition of effects of e and d in equfltion 5 (or equation

1).

5. The Architecture of the Closed-loop System
We propose the architecture of }1igure 4 to develop

compliancy for the robot. The compensat-:>r, H, is considered
to operate on the contact force, f. The compensator output
signal is being subtracted from the input command vector, r,
resulting in the input trajectory vectcJr, e, for the robot
manipulator. The readers should be remirlded that the robot
in Figure 4 can be considered a weak tracking robot (open
loop robot without any feedback on the position and velocity)
when the gain of 5 is a large number.

There are two feedback loops in the system; the
inner loop (which is the natural feedback loop), is the same
as the one shown in Figure 3. This loop shows how the contact
force affects the robot in a natural way when the robot is in
contact with the environment. The outer feedback loop is the
controlled feedback loop. If the robot and the environment
are not in contact, then the dynamic behavior of the system
reduces to the one represented by equation I, which is a plain
positioning system. When the robot and the environment
are in contact, then the value of the contact force and the end-
point position of robot are given by f and y where the
following equations are true:
y-G(e) + S(-f) (10)

f-E(x) where x-y-xo (11)

e-r-H(f) (12)
If the operators in equations 10,11, and 12 are

considered transfer function matrices, equations 13 and 14
can be obtained to represent the force and the robot end-point
position.
f -E ( In + S E + G HE) -1 G r (13)

y -( In + S E + G HE) -1 G r (14)

The objective is to choose a class of compensators, H, to
control the contact force with the input command r. By
knowing S, G. E, and choosing H, one can shape the
contact force. The value of H is the choice of designer and,
depending on the task, it can have various values in
different directions. A large value for H develops a
compliant robot while a small H generates a stiff robot.
Reference 7 describes a micro manipulator in which the
compliancy in the system is shaped for metal removal
application. Note that Sand GH add in equation 14 to
develop the total compliancy in the system. G H represents
the electronic compliancy in the robot while S models the
natural hardware compliancy (such as RCC or the robot
structural compliancy) in the system3. Equation 13 also
shows that a robot with good tracking capability (small gain
for S) may generate a large contact force in a particular
contact. One cannot choose arbitrarily large values for H;
the stability of the closed-loop system of Figure 4 must be
guaranteed. The trade-off between the closed-loop stability
and the size of H is investigated in Section 6.

,3 Equation 13 can be rewritten as f- (E-1+S+GH)-1Gr.
lNote that the environment admittance (1/impedance in the
hinear domain), ~1. the robot sensitivity (1/stiffness in the
linear domain), S. and the electronic compliancy, G H,
add together to form the total sensitivity of the system. If
H-O, then only the admittance of the environment and the
robot add together to form the compliancy for the system. By
closing the loop via H, one can not only add to the total
sesitivity but also shape the sensitivity of the system.



When the robot is not in contact with the
environment (i.e. the outer feedback loop in Figure 4 does
not exist), the actual position of the robot end-point is
governed by equation 1 when d-Q. When the robot is in
contact with the environment, then the contact force follows
r according to equations 10, 11 and 12. The input command
vector, r, is used differently for the two categories of
maneuverings; as an input trajectory command in
unconstrained space (equation 1 when d-Q) and as a
command to control force in constrained space. We do not
command any set-point for force as we do in admittance
control (10,11,12,17). This method is called Impedance
Control (1,3,4,7) because it accepts a position vector as input
and it reflects a force vector as output. There is no hardware
or soflware switch in the control syste«1 when the robot
travels between unconstrained space and constrained
space. The feedback loop on the contact force closes
naturally when the robot encounters the eIilvironment.

6. Stability Analysis
The objective of this section is to anive at a sufficient

condition for stability of the system shown in Figure 4. This
sufficient condition leads to the introduction of a class of
compensators, H, that can be used to develop compliancy for
the family of robot manipulators with dynamic behavior
represented by equation 1. Using operBltor V defined by
equation 9, the block diagram of Figure 5 i:; constructed as a
simplified version of the block diagram of lfigure 4. First we
use the Small Gain Theorem to derive the, general stability
condition. Then, with the help of a corollary, we show the
stability condition when H is chosen as a linear operator
(transfer function matrix) while V is a nonlinear operator.
Finally, if all the operators in Figure 4 are transfer
function matrices, then the stability bound is shown by
inequality 25. Section 7 is devoted to stability analysis of
the linearly treated systems4, when the environment is
infinitely rigid in comparison with the rob)t stiffi1ess.

The following proposition (using the Small Gain
Theorem in references 15,16) states the stability condition of
the closed-loop system shown in Figure 5.

~O-4
f

mapping, HV(e). The third stability condition requires that
H be chosen such that the loop mapping, HV(e), is linearly
bounded with less than a unity slope. The following
corollary develops a stability bound if H is selected as a
linear transfer function matrix.

Corollary
The key parameter in the proposition is the size of

~4~5' According to the proposition, to guarantee the stability
of the system, H must be chosen such that norm of HV(e) is
linearly bounded with a slope that is smaller than unity. IfH
is chosen as a linear operator (the impulse response) while
all the other operators are still nonlinear, then:

II HV(e] lip ( 't" II V(e] lip (21)

where: 't" -U mIx (N ] (22)
umlx indicates the maximum singular value, and N is a
matrix whose ijth entry is II ~J II,. In other words, each
member of N is the L1 norm of each corresponding member
of H. Considering inequality 16, inequality 21 can be
rewritten as:

II HV(e] lip ( 't" IIV(e]lIp( 't"~4I1ellp+ 't"P4 (23)
Comparing inequality 23 with inequality 20, to guarantee
the closed loop stability, 't"~4 must be smaller than unity, or,
equivalently:
't" (.1- (24)

~4
To guarantee the stability of the closed loop system, H must
be chosen such its "size" is smaller than the reciprocal of the
"gain" of the forward loop mapping in Figure 5. Note that 't"
represents a "size" of H in the singular value sense.

When all the operators of Figure 5 are linear
transfer function matrices one can use Multivariable
Nyquist Criterion to arrive at the sufficient condition for
stability of the closed loop system. This sufficient condition
leads to the introduction of a class of transfer function
matrices, H, that stabilize the family of linearly treated robot
manipulators and environment using dynamic equations 2
and 4. Appendix A shows that the stability condition given by
Nyquist Criterion is a subset of the condition given by the
Small Gain Theorem. Using the results from references 6
and 9:

umlx(GHE](Umln(SE + In] for eLL WE[O,OO] (25)z

or a more conservative condition,
1O"max(H) < O"max(E(In + SE)-1G) for all we [0.00)

(26)
Similar to the nonlinear case, H must be chosen such that
its "size" is smaller than the reciprocal of the "size" of the
forward loop mapping in Figure 6 to guarantee the stability
of the closed loop system. Note that in equality 26 D"max
represents a "size" of H in the singular value sense.
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Figure 5: Simplified Version or Figure 4

If conditions I, II and III hold:
L V is a lp- stable operator, that is

e) V(e): Lnp-Lnp (15)

b) IIV(e)lIp(lX4I1ellp+~4 (16)

L H is chosen such that mapping H(f) is Lp-stable, that is

e) H(f): Lnp-Lnp (17)

b) IIH(f)lIp(lX51Ifllp+ ~5 (18)

m. and lX4lX5<1 (19)'
then the closed-loop system (Figure 5) is Lp- stable. This can
be proved using the triangle inequality (6,15). Substituting
for IIfllp from inequality 16 into inequality 18 results in
inequality 20. (Note that f-V(e»
II HV(e) lip ( lX4lX511 ellp + lX5 ~4+ ~5 (20)

lX4lX5 in inequality 20 represents the gain of the loop

4 The stability analysis and the role of robot sensitivity and
environment dynamics on size H are best shown by linear
theory in equations 27-31. In particular, we confine our
analysis to linear one-degree-of -freedom robot in
equations 32 and 33 for better understanding the nature of
the stability analysis.

Figure 6: When all the operators are linear in Fifure 5
are transfer function matrices, V-E(SE+ln)- G.

Consider n=l (one degree of freedom system) for more
understanding about the stability criterion. The stability
criterion when n=l is given by inequality 27.

IHGI < IS+1/EI for all we(O,oo) (27)
where I-I denotes the magnitude of a transfer function.
Since in many cases G~1 for all O(w(wo. then H must be



increasing the robot sensitivity function. In many
commercial manipulators the sensitivity of the robot
manipulators can be increased by decreasing the gain of
each actuator positioning loop. This also results in a
narrower bandwidth (slow response in the unconstrained
maneuvering) for the robot positioning system.

8. Examples (19)
Linear Examnle: Consider a one degree of freedom

robot with G and S in equation 1 given as:
1

G(5) -(5/6+1)(5/10+1)(5/200+1)(5/250+1)(5/300+1)

S(5) -(5/5 +;~(~/9+ 1)

The system has a good positioning capability (small gain
for S and unity gain for G at DC). The poles that are located
at -250 and -300 show the high frequency modes in the
robot. The stability of this system when it is in contact with
various environment dynamics is analyzed. We assume E
is constant and has the value of 10 for all frquency ranges.
If we consider H as a constant gain, then inequality 27 yields
that for H(0.14 the value of I GH I is always smaller than
Is + 1/E I for all c.> e (0,00). Figure 7 shows the plots of
I GH I and Is + 1/E I for three values of H. For H- 0.08 the
system is stable with the closed loop poles located at (-
301.59. -244.81, -204.27, -9.25, -5.35, -
7.37t8.4j) while H-2.6 results in unstable system with
the closed loop poles located at (-324.9, -221.31t 63.52j,
0.78 t 37 .82j, -9.01. -5.02). Note that the stability
condition derived with inequality 27 is a sufficient
condition for stability; many compensators can be found to
stabilize the system without satisfying inequality 27. Figure
7 shows an example (H-1.5) that does not satisfy inequality
27 however the system is stable with closed loop poles at (-
317.67, -221.66t49.06j. -2.48t29.9j. -9.02, -
5.03). If one uses root locus for stability analysis, for
H(2.32 all the closed loop poles will be in the left half plane.
Once a constant value for stabilizing H established, one can
ichoose a dynamic compensator to filter out the high
\frequency noise in the force measurements:

H-~
.15+ 1

10r I I , , ' ~~~~~~==:::::~::~ '-

~, d10-"

16~

11)-'
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,. b: IGHI,H=I.5
c: IGHI,H:2.6
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1 1 1 1 10-1 1 101 102 10

Figure 7: I S + liE I and I GH I ror soft environment.
For a stiff environment (E-1000), when H is chosen as a

constant gain, then inequality 27 yields that for H(O.OI the
magnitude of I GHI is always smaller than I S+ liE I for all
ooe(O.oo). Figure 8 shows the plot of IGHI and IS+1/EI for
three values of H. For H- 0.006 the system is stable with
the closed loop poles located at (-309.03. -
222.59t26.86j. -5.04t50.47j. -9.81. -5.88) while
H=O.03 results in unstable system with the closed loop poles
located at (-326.74. -220.61t 66.52j. 1.51t 59. 71j. -
9.46, -5.60). Figure 8 also shows an example (H-0.015)
which does not satisfy inequality 27 however the system is
stable with closed loop poles at (-317.41. -221.23t48.02j.

chosen such that:

IHI<15+1/EI for all c.>E(O,c.> 0) (28)
Inequality 28 reveals some facts about 1;he size of H. The
smaller the sensitivity of the robot ma:rlipulator is, the
smaller H must be chosen. Also from inequality 28, the more
rigid the environment is, the smaller H must be chosen. In
the "ideal case", no H can be found to allow a perfect
positioning system (5 -0) to interact with an infinitely
rigid environment (E- 00). In other words, for stability of
the system shown in Figure 4, ther,e must be some
compliancy either in robot or in the environment. RCC,
structural dynamics and the tracking contrller stiffness
form the compliancy on the robot. Section 7 gives more
information about the effects of E on the stability region.

7. Stability for very rigid environment
In most manufacturing tasks, the end-point of the

robot manipulator is in contact with a very stiff
environment. Robotic de burring and grinding are
examples of practical tasks in which the robot is in contact
with stiff environment(5). It is easy to show that when the
environment is very stiff, (E is very '1ar~:e" in the singular
value sense), the limiting value for the COJ:ltact force and the
end-point position are given by equations 29 and 30
respectively:
f 00 -(5+GH)-IG r (29)

'd00 -0 (30)
Since G=In for all c.>E(O,c.>o), (the end-point position is
"approximately" equal to the input trajectory vector, e), the
value of the contact force, f, within the bandwidth of the
system (O,c.>o) can be approximated by equation 31:

too = [S+H)-lr for all OOE[O.<-:,o) (31)
By knowing S and choosing H, one can shape the contact
force. The value of(5+H) within (O,c.>ol is the designer's
choice and, depending on the task, it ,can have various
values in different directions (2,3). A lar~:e value for (5 + H)
within (O,c.>o) develops a compliant sys1;em while a small
(5+H) generates a stiff system. If H is chosen such that
(5+H) is "large" in the singular vahle sense at high
frequencies, then the contact force in response to high
frequency components of r will be small. If H is chosen to
guarantee the compliance in the system according to
equation 29, then it must also satisfy the stability condition.
It can be shown that the stability criterion for interaction
with a very rigid environment is given by inequality 32:

1D'max (H)< D'max (5-1 G) for all CAJE(O,OO) (32)

It is clear that if the environment is very rigid, then one
must choose a very small H to satisfy 1;he stability of the
system when 5 is "small". (A good positioning system has
"small" 5). Since G=lnfor allc.>E(O,c.>oJ, the bound for H,
for a rigid environment and a "small" I;tiffness, is given
by 33. .,

D'max (H) <D'mln(5) for all c.>E(O,c.>o) (33)
If 5 is zero, then no H can be obtained to stabilize the system.
To stabilize the system of the very rigid environment and
the robot, there must be a minimum compliancy in the robot.
Direct drive manipulators, because of the elimination of the
transmission systems, often have large i3. This allows for a
wider stability range in constrained manipulation.

We conclude that for stability of the environment
and robot taken as a whole, there must be some initial
compliancy either in the robot or in iliE' environment. The
initial compliancy in the robot can be obtained by a non-zero
sensitivity function or a passive compliant element such as
an RCC .Practitioners always observed that the system of a
robot and a stiff environment can always be stabilized when
a compliant element (e.g. piece of rubber or an RCC) is
installed between the robot and the emrironment. One can
also stabilize the system of the robot and environment by
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the linear condition for stability given by the multivariable
Nyquist Criterion is a subset of the general condition given
by the Small Gain Theorem.
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-2.37:t 54.40j, -9.63, -5.75). .If one lJ.ses root locus for
exact stability analysis, for H(0.023 all the closed loop
poles will be in the left. half plane. Complmson between the
stability condition for stiff and soft. environments, shows
that the soft. environment yields a wider s1;ability range.

9. Summary and Conclusion
A new controller architecture for c:ompliance control

has been investigated using unstructured models for
dynamic behavior of robot manipulators and environment.
This unified approach of modeling robot and environment
dynamics is expressed in terms of seru;itivity functions.
The control approach allows not only for tracking the input-
command vector, but also for compliancy in the constrained
mneuverings. A bound for the global stability of the
manipulator and environment has bE,en derived. For
stability of the environment and the robot taken as a whole,
there must be some initial compliancy either in the robot or
in the environment. The initial compliancy in the robot can
be obtained by a non-zero sensitivity function for the
positioning controller or a passive compliant element such
as an RCC.

Appendix A
The following inequalities are true when p-2 and H

and V are linear operators.

II H(V(e)Jllp ~ vII V(e) lip (AI)

II V(e) lip ~ JlII e lip (A2)
where:
Jl- D" max(Q), and Q is the matrix whose ijtl1, entry is given by

(Q)IJ- SUp..,I(V)IJI,
v- D"max(R), and Ris the matrix whose ijth entry is given by

(R)IJ -sup..,! (H)IJ!
Substituting inequality A2 in AI:

II HV(e) lip (Jlvll e lip (A3)
According to the stability cpndition, to guarantee the closed
loop stability Jl v < 1 or:

v< 1. (A4)
Jl

Note tllat tlle followings are true:
D"max(V) (Jl for all c.> E [0, 00) (A5)

D"max(H) (v for all c.> E [0, 00) (A6)
Substituting A5 and A6 into inequalityA4 which guarantees
the stability of the system, the follow:ing inequality is
obtained:

1
D"max(H) « V) for all c.> E [0, 00) (A7)

D" max

1D"max(H) < D"max(E(In+SE)-1G) for all c.> E [0,00)

(AS)
Inequality AS is identical tAl inequality 26. This shows that


